为了账号安全,请及时绑定邮箱和手机立即绑定
慕课网数字资源数据库体验端
python进阶_学习笔记_慕课网
为了账号安全,请及时绑定邮箱和手机立即绑定

python进阶

廖雪峰 移动开发工程师
难度中级
时长 3小时33分
  • 在Python中,类通过 class 关键字定义。以 Person 为例,定义一个Person类如下: class Person(object): pass 按照 Python 的编程习惯,类名以大写字母开头,紧接着是(object),表示该类是从哪个类继承下来的。类的继承将在后面的章节讲解,现在我们只需要简单地从object类继承。 有了Person类的定义,就可以创建出具体的xiaoming、xiaohong等实例。创建实例使用 类名+(),类似函数调用的形式创建: xiaoming = Person() xiaohong = Person()
    查看全部
  • Python的新版本会引入新的功能,但是,实际上这些功能在上一个老版本中就已经存在了。要“试用”某一新的特性,就可以通过导入__future__模块的某些功能来实现。 例如,Python 2.7的整数除法运算结果仍是整数: >>> 10 / 3 3 但是,Python 3.x已经改进了整数的除法运算,“/”除将得到浮点数,“//”除才仍是整数: >>> 10 / 3 3.3333333333333335 >>> 10 // 3 3 要在Python 2.7中引入3.x的除法规则,导入__future__的division: >>> from __future__ import division >>> print 10 / 3 3.3333333333333335 当新版本的一个特性与旧版本不兼容时,该特性将会在旧版本中添加到__future__中,以便旧的代码能在旧版本中测试新特性。
    查看全部
  • 一个数对1求余,可以判断其是否为整数
    查看全部
  • 利用ImportError错误,我们经常在Python中动态导入模块: try: from cStringIO import StringIO except ImportError: from StringIO import StringIO 上述代码先尝试从cStringIO导入,如果失败了(比如cStringIO没有被安装),再尝试从StringIO导入。这样,如果cStringIO模块存在,则我们将获得更快的运行速度,如果cStringIO不存在,则顶多代码运行速度会变慢,但不会影响代码的正常执行。 try 的作用是捕获错误,并在捕获到指定错误时执行 except 语句。
    查看全部
  • 如果使用 from...import 导入 log 函数,势必引起冲突。这时,可以给函数起个“别名”来避免冲突: from math import log from logging import log as logger # logging的log现在变成了logger print log(10) # 调用的是math的log logger(10, 'import from logging') # 调用的是logging的log
    查看全部
  • 但 sorted()也是一个高阶函数,它可以接收一个比较函数来实现自定义排序,比较函数的定义是,传入两个待比较的元素 x, y,如果 x 应该排在 y 的前面,返回 -1,如果 x 应该排在 y 的后面,返回 1。如果 x 和 y 相等,返回 0。 因此,如果我们要实现倒序排序,只需要编写一个reversed_cmp函数: def reversed_cmp(x, y): if x > y: return -1 if x < y: return 1 return 0 这样,调用 sorted() 并传入 reversed_cmp 就可以实现倒序排序: >>> sorted([36, 5, 12, 9, 21], reversed_cmp) [36, 21, 12, 9, 5]
    查看全部
  • 假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去: def int2(x, base=2): return int(x, base) 这样,我们转换二进制就非常方便了: >>> int2('1000000') 64 >>> int2('1010101') 85 functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2: >>> import functools >>> int2 = functools.partial(int, base=2) >>> int2('1000000') 64 >>> int2('1010101') 85 所以,functools.partial可以把一个参数多的函数变成一个参数少的新函数,少的参数需要在创建时指定默认值,这样,新函数调用的难度就降低了。
    查看全部
    0 采集 收起 来源:python中偏函数

    2018-03-22

  • class Person(object): def __init__(self, name, gender, **kw): self.name = name self.gender = gender for key in kw: setattr(self, key, kw[key]) p = Person('Bob', 'Male', age=18, course='Python') print p.age print p.course
    查看全部
  • 可见,由于decorator返回的新函数函数名已经不是'f2',而是@log内部定义的'wrapper'。这对于那些依赖函数名的代码就会失效。decorator还改变了函数的__doc__等其它属性。如果要让调用者看不出一个函数经过了@decorator的“改造”,就需要把原函数的一些属性复制到新函数中: def log(f): def wrapper(*args, **kw): print 'call...' return f(*args, **kw) wrapper.__name__ = f.__name__ wrapper.__doc__ = f.__doc__ return wrapper 这样写decorator很不方便,因为我们也很难把原函数的所有必要属性都一个一个复制到新函数上,所以Python内置的functools可以用来自动化完成这个“复制”的任务: import functools def log(f): @functools.wraps(f) def wrapper(*args, **kw): print 'call...' return f(*args, **kw) return wrapper 最后需要指出,由于我们把原函数签名改成了(*args, **kw),因此,无法获得原函数的原始参数信息。即便我们采用固定参数来装饰只有一个参数的函数: def log(f): @functools.wraps(f) def wrapper(x): print 'call...' return f(x) return wrapper 也可能改变原函数的参数名,因为新函数的参数名始终是 'x',原函数定义的参数名不一定叫 'x'。
    查看全部
  • from functools import reduce
    查看全部
  • str.upper()把字符串 str 任意字符变成大写 str.lower()把字符串str任意字符变成小写 str.capitalize()返回一个首字符大写其他字符小写的str的副本 map(f,L)把L相应数据均通过f()函数转换为一个新的list map(func_name,list_obj)高阶函数:返回list_obj中每个元素分别经过func_name作用过的新的list,例子如下: def formate_name(s): return str.capitalize(s) print map(formate_name,['adam','LINDA','jany']) 输出结果为:['Adam','Linda','Jany']
    查看全部
  • 计算平方根可以用函数:math.sqrt()
    查看全部
  • reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。 例如,编写一个f函数,接收x和y,返回x和y的和: def f(x, y): return x + y 调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算: 先计算头两个元素:f(1, 3),结果为4; 再把结果和第3个元素计算:f(4, 5),结果为9; 再把结果和第4个元素计算:f(9, 7),结果为16; 再把结果和第5个元素计算:f(16, 9),结果为25; 由于没有更多的元素了,计算结束,返回结果25。 上述计算实际上是对 list 的所有元素求和。虽然Python内置了求和函数sum(),但是,利用reduce()求和也很简单。 reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100,计算: reduce(f, [1, 3, 5, 7, 9], 100) 结果将变为125,因为第一轮计算是: 计算初始值和第一个元素:f(100, 1),结果为101。
    查看全部
  • 所以,带参数的log函数首先返回一个decorator函数,再让这个decorator函数接收my_func并返回新函数: def log(prefix): def log_decorator(f): def wrapper(*args, **kw): print '[%s] %s()...' % (prefix, f.__name__) return f(*args, **kw) return wrapper return log_decorator @log('DEBUG') def test(): pass print test() 执行结果: [DEBUG] test()... None 对于这种3层嵌套的decorator定义,你可以先把它拆开: # 标准decorator: def log_decorator(f): def wrapper(*args, **kw): print '[%s] %s()...' % (prefix, f.__name__) return f(*args, **kw) return wrapper return log_decorator # 返回decorator: def log(prefix): return log_decorator(f) 拆开以后会发现,调用会失败,因为在3层嵌套的decorator定义中,最内层的wrapper引用了最外层的参数prefix,所以,把一个闭包拆成普通的函数调用会比较困难。不支持闭包的编程语言要实现同样的功能就需要更多的代码。
    查看全部
  • 要让 @log 自适应任何参数定义的函数,可以利用Python的 *args 和 **kw,保证任意个数的参数总是能正常调用: def log(f): def fn(*args, **kw): print 'call ' + f.__name__ + '()...' return f(*args, **kw) return fn 现在,对于任意函数,@log 都能正常工作。
    查看全部

举报

0/150
提交
取消
课程须知
本课程是Python入门的后续课程 1、掌握Python编程的基础知识 2、掌握Python函数的编写 3、对面向对象编程有所了解更佳
老师告诉你能学到什么?
1、什么是函数式编程 2、Python的函数式编程特点 3、Python的模块 4、Python面向对象编程 5、Python强大的定制类
友情提示:

您好,此课程属于迁移课程,您已购买该课程,无需重复购买,感谢您对慕课网的支持!